Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Intervalo de año
1.
[Unspecified Source]; 2020.
No convencional en Inglés | [Unspecified Source] | ID: grc-750506

RESUMEN

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated-transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryo-electron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template-product in complex with two molecules of the nsp13 helicase. The Nidovirus-order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12-thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapeutic development.

2.
Biophys J ; 120(6): 1020-1030, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: covidwho-987186

RESUMEN

The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.


Asunto(s)
ADN Viral/metabolismo , Metiltransferasas/metabolismo , ARN Helicasas/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/metabolismo , Adenosina Trifosfato/farmacología , Fenómenos Biomecánicos , Imagen Individual de Molécula
3.
Cell ; 182(6): 1560-1573.e13, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: covidwho-710427

RESUMEN

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryoelectron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template product in complex with two molecules of the nsp13 helicase. The Nidovirales order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12 thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapy development.


Asunto(s)
Metiltransferasas/química , ARN Helicasas/química , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Replicación Viral , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Betacoronavirus/genética , Betacoronavirus/metabolismo , Betacoronavirus/ultraestructura , Sitios de Unión , ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , Holoenzimas/química , Holoenzimas/metabolismo , Magnesio/metabolismo , Metiltransferasas/metabolismo , Unión Proteica , ARN Helicasas/metabolismo , ARN Viral/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo
4.
bioRxiv ; 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: covidwho-663149

RESUMEN

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated-transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryo-electron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template-product in complex with two molecules of the nsp13 helicase. The Nidovirus-order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12-thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapeutic development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA